A Time - Domain Symmetric Galerkin BEM for Viscoelastodynamics

نویسندگان

  • Lars Kielhorn
  • G. Brenn
چکیده

The numerical solution of elliptic or hyperbolic boundary value problems via the Boundary Element Method has a long tradition and is well developed nowadays. The two most popular discretization schemes of the underlying boundary integral equations are the Collocation method and the Galerkin method. While the first one has been adopted to both types of boundary value problems the latter one has been mainly applied to elliptic boundary value problems. To close this gap, the present work is concerned with the derivation of a Symmetric Galerkin Boundary Element Method (SGBEM) for 3-dimensional mixed initial boundary value problems. Thereby, the deduction of the method is presented in an unified manner such that, finally, the scalar wave equation, the system of elastodynamics as well as viscoelastodynamic problems are covered. Contrary to unsymmetric Boundary Element formulations, the SGBEM demands the use of the second boundary integral equation featuring hyper-singularities. With the help of the Stokes theorem those hypersingularities as well as the strong singular integral kernels are transformed into weakly singular integral kernels. Afterwards, the Boundary Element Method is formulated by using standard techniques for the spatial discretization and by applying the Convolution Quadrature Method to the time-convolution integrals. The final numerical tests verify this method and approve its robustness and its reliability. These two properties are an essential prerequisite for a successful use of the proposed Boundary Element Method within a wide range of industrial applications. Zusammenfassung Randelementmethoden stellen ein bekanntes Werkzeug zur numerischen Lösung elliptischer sowie hyperbolischer Randwertprobleme dar. Dabei sind die Kollokationsmethode sowie das Galerkinverfahren als die am häufigsten zum Einsatz kommenden Diskretisierungsverfahren der zugrunde liegenden Randintegralgleichungen zu nennen. In Ingenieuranwendungen findet die Kollokationsmethode aufgrund ihres relativ einfachen Aufbaus heutzutage den meisten Zuspruch. Die Galerkin Formulierung hingegen wird hauptsächlich im Rahmen elliptischer Randwertprobleme genutzt und Anwendungen im Zeitbereich finden sich bisher selten. Um diese Lücke zu schließen, ist das Ziel der vorliegenden Arbeit die Entwicklung einer symmetrischen Galerkin-Randelementmethode zur Lösung dreidimensionaler Probleme im Zeitbereich. Die Herleitung der Methode wird dabei sehr allgemein präsentiert, so dass sich mit ihr letztlich Probleme der Akustik, der linearen Elastodynamik sowie der linearen Viskoelastodynamik behandeln lassen. Die symmetrische Formulierung verlangt jedoch die Verwendung einer hypersingulären Randintegralgleichung, deren zuverlässige numerische Auswertung ein erhebliches Problem darstellt. Daher werden sowohl die hypersingulären als auch die stark singulären Integrale mit Hilfe des Satzes von Stokes in für die Numerik günstigere, schwach singuläre Integrale transformiert. Anschließend wird die eigentliche Randelementmethode formuliert. Die örtliche Diskretisierung erfolgt dabei mit Standardtechniken während die Zeitintegrale mit Hilfe der Faltungsquadraturmethode gelöst werden. In den Beispielen zeigt sich, dass die vorgestellte Methode sehr gute Resultate liefert und ein äußerst stabiles Verhalten aufweist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspects of Trefftz’ Method in BEM and FEM and their coupling

In both boundary element methods and Trefftz-type finite element methods a partial differential equation in some domain is treated by solving a discrete problem on the boundary of the domain and possibly the boundaries between subdomains. We consider a Trefftz element formulation which is based on the complementary energy functional, and we compare different regularizations of the interelement ...

متن کامل

Recent Advances and Emerging Applications of the Boundary Element Method

Sponsored by the U.S. National Science Foundation, a workshop on the boundary element method (BEM) was held on the campus of the University of Akron during September 1–3, 2010 (NSF, 2010, “Workshop on the Emerging Applications and Future Directions of the Boundary Element Method,” University of Akron, Ohio, September 1–3). This paper was prepared after this workshop by the organizers and partic...

متن کامل

Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems

We consider symmetric as well as non-symmetric coupling formulations of FEM and BEM in the frame of nonlinear elasticity problems. In particular, the Johnson-Nédélec coupling is analyzed. We prove that these coupling formulations are well-posed and allow for unique Galerkin solutions if standard discretizations by piecewise polynomials are employed. Unlike prior works, our analysis does neither...

متن کامل

Acoustic Green’s functions using the Sinc-Galerkin method

Green’s functions represent the scattering behaviour of a particular geometry and are required to propagate acoustic disturbances through complex geometries using integral methods. The versatility of existing integral methods of acoustic propagation may be greatly increased by using numerical Green’s functions computed for more general geometries. We investigate the use of the Sinc-Galerkin met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009